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ABS TRACT

This report forms thc user's guide for Version 3.2 of QPSOL, a set of Fortran subroutines designed
to locate the minimum value of a quadratic function subject to linear constraints and simple upper
and lower bounds. ir the quadratic function is convex, a global minimum is found; otherwise, a
local minimum is found. The method used is most efficient when many constraints or bounds ame
active at the solution. QlPSOL treats the Hessian and general constraints as dense matrices, and
hence is not intended for large sparse problems.

p This document replaces the previous user's guide of July 1983.
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1. PURPOSE QPSOL,/1

QPSOL is a collection of Fortran subroutines designed to solve the quadratic programming
(QP) problem -- the minimization or a quadratic function subject to a set of linear constraints
on the variables. The problem is assumed to be stated in the following form: .

QP minimize cx + H"
ZEN" 2

subject to I < t uS

where c is a constant n-vector and I is a constant n X n symmetric matrix; note that H1 is the

Hessian matrix (matrix of second partial derivatives) or the quadratic objective function. The

matrix A is m X n, where m may be zero; A is treated as a dense matrix.
The constraints involving A will be called the general constraints. Note that upper and lower

:K,'. bounds are specified ror all the variables and for all the general constraints. The form of QP
allows rul generality in specifying other types of constraints. In particular, an equality constraint

is specified by setting 1i = ui. If certain bounds are not present, the associated elements of t or
u can be set to special values that will be treated as -co or +00. .. "*

The user must supply an initial estimate or the solution to QI', and a subroutine that computes
the product liz for any given vector z. Some typical examples of this subroutine are included

with the Ql'SOL package. There is no restriction on !1 apart from symmetry. If i is positive

* definiLe or positive semi-definite, QI'SOI, will obtain a global minimum; otherwise, the solution
obtained will be a local minimum (which may or may not be a global minimum). If ni is defined

• -as the zero matrix, QISOI, will solve tie resulting linear programming (1,1') problem; however,
. this can be accomplished inore efficiently by setting a logical variable in the call of subroutine

QPSOL (see the parameter LP in Section 4), or by using the II'SOL package.

QPSOI, allows the user to provide the indices of the constraints that are believed to be
satisied exactly at Ihe solution. This facility, known as a warm start, can lead to significant
savings in computational effort when solving a sequence of related problems. F'or example, the

NI'SOL package or cill et al. (1984b) uses this feature in a sequential quadratic programming
method for nonlinearly constrained optimization.

The quantity of output is controlled by the user (see the parameter MSGLVL discussed In
Section 4). The QI'SOL package contains approximately 6000 lines of ANSI (1966) Standard
Fortran, of which 44% are comments.

1.-2 ,
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2. DESCRIPTION

The method used to solve QP is an active-set null-space method, and is described in detail

in Gill et al. (1984c); a closely related method is given in Gill and Murray (1978). The main

features of the method are presented here. Where possible, explicit reference is made to the names

* or variables that are parameters of subroutine QPSOL or are mentioned in the printed output.

The method has two distinct phases. In the first (thc LP phase), an iterative procedure is

carried out to determine a feasible point. In this context, feasibility is defined by a user-provided

array FEATOL; the j-th constraint is considered satisfied if its violation (does not exceed FEATOLUj)

(see the discussion or FEATOL in Section 4.) The second phase (the QP phase) generates a sequence

of feasible iterates in order to mninimnize the quadratic objective function. In both phases, a subset

* of the constraints - called the working set -- is used to define the search direction at each

iteration; typically, the working set includes constraints that are satisfied "exactly" (to within

the correspondhing tolerances in the FEATOL array).
We now briefly describe a typical iteration in the QP phase. Let xi denote the estimate of

- .the solution at the k-th iteration; the next iterate is defined by

Zk+1 I Zk + akPk,

where pA; is an n-dimensional search direction and ak is a scalar step length. Assume that

the working set c~ontains tk linecarly ind~ependent constraints, andl let ('k denote the matrix of

coelicienits of the bounds and general constraints in the current working set.

Let Z denote a matrix whose columns form a basis For the null space of Ck, so that 6'&Z&

0. (Note that Zt has n, colunins, where n, = n - tk.) The vector 4( iz)i ale h

projected gradlient at xk. IF thve projected gradlient is zero at Xk (i.e., t it; a constrainedl stationary

point in the subspace defined by 74), Lagrange mu~ltipliers Xi, are (dined as the solution of the

compatible overdetermi ncd system

Cr.\A =c+ Hxh.(I

The Lagrange multiplier X corresponding to an inequality constraint in the working set is MIA to
be optimal ir x < 0 when the associated constraint is; at its tipper boumnd, or ir x > 0 when the

associatedl constraint is at its lower bound. If a multiplier is non-optimal, the objective function

can be reduced by deleting the corresponding constraint (with index KDEL) from the working set.

iF the projected gradient at xk is nonzero, the search direction pA; is (dinled as

pig =4pm, (2)

where ps is an nx-vector. In effect, the constraints in the working set are treated al; equalitirn, by

constraining ph to lie within the subspace of vectors orthogonal to the rows oF C,,. This definition
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ensures that Chp, 0, and hence the values of the constraints in the working set are not altered At

by any move along pt,. -..

The vector p.a is obtained by solving the equations

ZTHZ p, -ZTlc + Hz,,). (3)

(The matrix Z~jIIZk, is called the projected Hessian matrix.) If the projected Hessian is positive
definite, the vector defined by (2) and (3) is the step to the minimum of the quadratic function
in thc subspace definecd by Zg.

if the projected lessian is positive definite and zt, + pk is feasible, aig will be taken as unity. *
In this case, the projected gradient at zig+1 will be zero (see the variable NORM ZTG in the output
fromn QPS04) asid Lagrange multipliers can be computed (see (1)). Otherwise, oa, is set to the
step to Ltec "nearest" constraint (with index KADD), which is added to the working set at the next

iteration.

The matrix Z, is obtained from the TQ factorization of Cig, in which Cg is represented as

CQ=(0 Tig) (4)

where T'g is reverse-triangular (see Cill et at., 1984a). It follows from (4) that X1, [nay be taken
as; the first n, columns or Q. If the projected hlessian is positive definite, (3) is solved using the
Cholesky rlaorization

where Ilk, is uppi-r triangular. These factorizations are upda tevi as constrainits enter or leave the
working wet. The update procedures are decribed in detail in Gill et al. (1984a).

An important feature of QI'SOL is the treatment of indefiniteness in Lte projected Ihessian.

if the projected lessian is positive definite, it inay become indefinite only wh~en a constraint is
deleted froin Lte %working met. In this case, it temnporary modification (or magnitude HESS MOD) is
added to Lte last diagonal eement of Lte Cholesky factor. Once a miodification tIf&s occurred, no
fuirther ronuutraisuts are dreLeed frn, Lte working set until enough constnaiuts have beef) added so
that the projected I lemaian is again positive definite. If problemn (1' has a finite solution, a move
along the direction obtained by solving (3) with thfe modified Cholesky factor must encounter a
constraint that in not already in the working set. 1.,-

In order Wo resolve indefiniteness in this way, wc must ensure that the projected ilessian is
positive definite at the first iterate in the Q11 phase. Civen the n, X n, projected Hessian, a
ste~p-wise Cholesky factorixation is performed with syntivetric interchanges (and corresponding .

rearrangement or the columns of z), terminating if the next step would cause the matrix to
become indefinite. This determines the largest possible positive-definite principal submatrix of *
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the (permuted) projected Hessian. Ir n. steps or the Cholesky factorization have been successfully

completed, the relevant projected lessian is an n. X n. positive-definite matrix ZTtIZ, where

Z comprises the first n. columns or Z. The quadratic function will subsequently be minimized

within subspaces of reduced dimension until the full projected Hessian is positive definite.

Several strategies are used to control ill-conditioning in the working set. One such strategy " I

is associated with the FEATOL array. Allowing the j-th constraint to be violated by as much as

FEATOL(j) often provides a choice or constraints that could be added to the working set. When

a choice exists, the decision is based on the conditioning or the working set. Negative steps are

occasionally permitted, since zk may violate the constraint to be added.

2' . . .
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3. SPECIFICATION QPSOL/5

83. SPECIFICATION

SUBROUTINE QPSOL( ITMhAX, MSGLVL I.N,

NCLIN, NCTOTL, NROWA. NROWH. NCOLHo

BIGBNDo A. BL, BU. CVEC. FEATOL. HESS. QPHES. -0

COLD. LP. ORTHOG ISTATE0 X,

INFORM, ITER. OBJ. CLA.DA-

'I..-. ..
IW. LEzNIW, W. LEW . i:-:"

LOGICAL COLD, LP., ORTHOG

EXTERNAL QPHESS

INTEGER ITMAX. MSGLVLo N. NCLINo NCTOTL.

NROWA. NROWH. NCOLH, INFORM. ITER. LENIW. LENI

INTEGER ISTATE(NCTOTL). IW(LENIW)

REAL BIGBND. OBJ

REAL A(NROWA,N), BL(NCTOTL), BU(NCTOTL)o CVEC(N),

FEATOL(NCTOTL), HESS(NROWH. NCOLH). X(N).

CLAMDA(NCTOTL), W(LEW)

Note: lere and elsewhere, the specification of a parameter as REAL should be interpreted as
working precision, which may be DOUBLE PRECISION in some circumstances.

~-." 9 :
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1 4.INPUT PARAMETERS

ITAX is an upper bound on the number of iterations to be taken during the LP phase or the

QP phase.

MSGLVL indicates the amount of intermediate output desired. The printout is described in

Section 9. All output is written to the file number NOUT (see subroutine UCHPAR in
Section 11). For MSGLVL > 10, each value of MSGLVL includes the output from all lower

values. The printout corresponding to each value of MSGLVL is defined as follows:

MSGLVL Definition

0 No output.

I The Ainal solution only.

5 One brier line or output for each constraint addition or deletion (no
printout or the final solution).

> 10 The final solution and one brier line of output for each constraint

addition or deletion.

> 15 At each iteration, X, ISTATE, and the indices of the free variables (i.e.,
the variables not currently held on a bound).

> 20 At each iteration, the Lagrange multiplier estimates and the general

constraint values.

> 30 At each iteration, the diagonal elements of the matrix T associated

with the TQ factorization or the working set, and the diagonal ele-
ments or the Cholesky factor It or the projected Hessian.

> 80 l)ebug printout.

99 The arrays CVEC and HESS.

N is the number of variables (i.e., the dimension or x ). N must be positive.

NCLIN is the number of general linear constraints in the problem (NCLIN may be zero).

NCTOTL must be set to N + NCLIN.

NROWA is the declared row dimension of A (NROWA must be at least 1 and at least NCLIN).

KROWH is the declared row dimension or the array HESS (NROWH must be at least. 1).

NCOLH is the declared column dimension of the array HESS (NCOLH must be at least 1).

...............
.. .. . .. . .. .. . .. . .. .. . .. . .. .



4. INPUT PARAMETERS QPSOL/..

BIGBND is a positive real variable whose magnitude denotes an "infinite" component of t and

U. Any upper bound greater than or equal to BIGBND will be regarded as plus infinity

(and similarly for a lower bound less than or equal to -BIGBND).

A is a real array of declared dimension (NROWA,N). The i-th row of A contains the coefficients

of the i-tb general constraint, i = 1 to NCLIN. If NCLIN is zero, A is not accessed.

BL is a real array of dimension NCTOTL that contains the lower bounds for all the constraints,

in the following order (which is also observed for BU, ISTATE, and CLAUDA): the first

N elements of BL contain the lower bounds on the variables; if NCLIN > 0, the next . 9
NCLIN elements of BL contain the lower bounds for the general linear constraints. In

order for the problem specification to be meaningful, it is required that BL(j) <5 BU(j) ...

for all j. To specify a non-existent lower bound (i.e., t4 = -oo), the value used must . :

satisfy BL(j) -BIGBND. To specify the j-th constraint as an equality, the "ser must

set BL(j) = BU(j) = P, -say, where [#1 < BIGBND.

BU is a real array or dimension NCTOTL that contains the tipper bound all the con-

straints, in the same order described above under BL. To specify a no i ent upper

bound (i.e., ui = oo), the value used must satisfy BU(j) > BIGBND.

CVEC is a real array of dimension N containing the coefficients of the linear term or the -

objective function (the vector c in problem Q[1).

FEATOL is a real array or dimension NCTOTL containing positive tolerances that define tlhe

maximum permissible violation in each constraint in order for a point to be considered

feasible, i.e. constraint j is considered satisfied if its violation does rnot. exceed FEATOL(j). -

Note that FEATOL(j) is a bound on the absolute acceptable violation. For example, if the
data defining the constraints are or order unity and are correct to about 6 decimal digits,

it would be appropriate to choose FEATOL(j) as 10- 6 for all relevant j. In gener4 the

elements of FEATOL should be chosen as the largest possible acceptable values, since the .c.-" -

algorithm of Ql'SOL becomes less likely to encounter dilficulties with ill-conditioning

and degeneracy as the components of FEATOL increase. A warning imessage is printed

ir any component or FEATOL is less than machine precision; the user must not set any 9
component or FEATOL to zero. A detailed discussion or FEATOL is given in Gill et a.

(1984c).

HESS is a real array of declared dimension (NROWH, NCOLH) that may be used to store the

llessian matrix it of problem Qv ir desired. The elements or HESS are accessed only by

the subroutine QPHESS; thus HESS is not accessed ir LP is .TRUE. In some cams, the user

need not use HESS to store 11 explicitly (see the specification of QPHESS below).
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* QPHESS is the name of a subroutine that dclines the Hessian matrix. QPHESS must be declared as

* . EXTERNAL in the routine that calls QPSOL. QPHESS is not accessed if the logical variable

- . LP is .TRUE. (sce the description below of LP). The user has con~siderable flexibility in

coding QPHESS because the algorithm of QPSOL, requires only the product of HI and a

vector; thc elemnents of the matrix HI necd not be defined explicitly. Several examples of

QPHESS are provided in order to demonstrate some or the alternatives. The specification

or QPHESS is:

SUBROUTINE QPHESS( N, NROWH, NCOLH, JTHCOL, HESS, X, HX)

INTEGER N. NROWH, NCOLH, JTHCOL

REAL HESS(NROWH. NCOLH), X(N). HXCN).

rhc actual paramecters N, NROWH, NCOLH and HESS input to QPHESS will always be the
same Fortran variables and arrays as those inputt to QPSOL. They mnust. not be altered

by QPHESS.

Vor a given vector x (the array X), the array IVC must contain the product lIx on

*exit Froin QPHESS.

1'he input parameter JTHCOL is included to allow flexibility for the user in) thle

special situation wheni x is the j-th coordinate vector (i.e., the j-th column of the

identity mnatrix). This mnay be oF interest because the prodIuct lix is then the j-th

columin or ii, which can somnetinmes be computed very efficiently. The user may code
QPHESS to take advantage or this case. jr JTHCOL =j, where j > 0, HX should contain

column JTHCQL or I/, and herice special code unay be included in QPHESS to test JTHCOL

if desired. Hlowever, sp~ecial -odle is timof necessary, since thme vector X always contains

columivn JTHCOL oF ohe idenitity miatrix whenever QPHESS is called wi th JTHCOL > 0.
lIn sonie cases, it inay be dlesi rable to uise a oue-dimnerisional array to transmnit dlata

or workspace to QPHESS; HESS should then be declared as REAL HESS(NROWH), and the

parameter NCOLH mnust be 1. (This device is used for the example subroutines QPHES4
-. and] QPHES8 in the QPSOL package, to economnize on storage.)

* .In other situations, it mnay fie (desirable to compute 11x without accessing HESS-

for example, iF 11 is sparse or has special structure. (This is illuistrated in time subroutine

QPHES1 iii the QPSOL package.) T he parameters HESS, NROWH and NCOLH may then refer

to anmy convenient array.

When MSGLVL = 99, time (possibly undefined) contents of HESS will be printed,

except if NROWH and] NCOLH are bothu 1. Also printed are the rcsults of calling QPHESS

with JTHCOL = 1, 2,..N.

COLD is a logical variable that indicates whether the user wishes to specTiry the initial working-

set. In general, COLD should be set to .TRUE. for the first call of QPSOL, and the

initial working set will then be selectedI by QPSOL. llowever, if a good estimate of the
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initial working set is available - for example, when QPSOL is called repeatedly to solve
related problems -- it may be advantageous to set COLD to FALSE. after the first

call. When COLD is .FALSE., the user must define every element of ISTATE (see the

description or ISTATE for the meaning of each possible value). QPSOL will override the

user's specification of ISTATE if necessary, so that a poor choice of the working set will p
not cause a fatal error.

LP is a logical variable. If LP is .FALSE., QPSOL will solve the specified quadratic program-

rming problem. If LP is .TRUE., QPSOL will treat If as zero and solve the resulting linear
program; in this case, parameters HESS and QPHESS will not be accessed. .

ORTHOG is a logical variable that indicates whether orthogonal transrormations are to be used . -

in computing and updating the TQ factorization of the working set

AQ=(O T), .

" where A is a submatrix of A and T is reverse-triangular. If ORTHOG is .TRUE., the TQ
factorization is computed using Householder reilections and plane rotations, and the

1K matrix Q is orthogonal. ir ORTHOG is .FALSE., stabilized elementary transformations are
used to maintain the factorization, and Q is not orthogonal. A rule of thumb in making

the choice is. that orthogonal transformations require more work, but provide greater
numerical stability. Thus, we recommend setting ORTHOG to .TRUE. if the problem

is reasonably small or the active set is ill-conditioned. Otherwise, setting ORTHOG to

P! .FALSE. will often lead to a reduction in solution time with negligible loss or reliability.

• . . - .

L. L.

:. .',-.'.-,
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5. INPUT/OUTPUT PARAMETERS
S%o

ISTATE is an integer array of dim 'sion NCTOTL that indicates the status of every constraint

with respect to the working set. The ordering of ISTATE is the same as that described

above under BL, i.e., the first N components or ISTATE refer to the upper and lower

bounds on the variables, and components N + I through N + NCLIN refer to the upper

and lower bounds on Ax. The significance of each possible value of ISTATE(j) is as

follows:

ISTATE(j) Meaning

-2 The constraint violates its lower bound by more than FEATOL(I). This

value of ISTATE cannot occur after a feasible point has been found.

-1 The constraint violates its upper bound by more than FEATOL(j). This

value of ISTATE cannot occur after a feasible point has been found.

0 The constraint is not in the working set. Usually, this means that the

constraint lies strictly between its bounds.

I This inequality constraint is included in the working set at its lower

bound. The value of the constraint is within FEATOL(j) of its lower 6A

bound.

2 This inequality constraint is included in the working set at its upper

bound. The value of the constraint is within FEATOL(j) or its tipper
bound.

3 The constraint is included in the working set as an equality. This value .

or ISTATE can occur only when BL(j) BU(j). The corresponding

constraint is within FEATOL(j) of its required value.

If COLD = .TRUE., ISTATE need not be set by the user. However, when COLD is

.FALSE., every element of ISTATE must be set to one of the values given above to define ..

a suggested initial working set (which will be changed by QPSOL if necessary). The most

likely values are:

ISTATE(j) Meaning-'

0 The corresponding constraint should not be in the initial working set. -7
I The constraint should be in the initial working set at its lower bound.

2 The constraint should be in the initial working set at its upper bound.

3 The constraint should be in the initial working set as an equality. This

value must not be specified unless BL(j) = BU(j). The values I, 2 or 3

all have the same effect when BL(j) - BU(j).

~ ** *% **.**% *** .....-.*
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Other values of ISTATE are also acceptable. In particular, if QPSOL has been called .

previously with the same values of N and NCLIN, ISTATE already contains satisfactory..'.-

values.

When QPSOL exits with INFORM set to 0, 1 or 3, the values in the array ISTATE indicate __

the status of the constraints in the active set at the solution. Otherwise, ISTATE S

indicates the composition of the working set at the final iterate.

X is a real array of dimension N that contains the current estimate of the solution. On

entry to QPSOL, X must be defined; on exit from QPSOL, X contains the best estimate of

the solution.

ka..-
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6. OUTPUT PARAMETERS .4

INFORM is an integer that indicates the result or QPSOL. (When MSGLVL > 0, a short description

of INFORM is printed.) The possible values or INFORM are:

INFORM Definition

0 X is a strong local minimum, i.e., the projected gradient is negligible,

the Lagrange multipliers are optimal, and the projected lessian is

positive definite. In some cases, a zero value or INFORM means that X is

a global minimum (e.g., when the llessian matrix is positive definite). -

I X is a weak local minimum (the projected gradient is negligible, the

Lagrange multipliers are optimal, but the projected Hessian is only

positive semi-definite). This means that the solution is not unique.

2 The solution appears to be unbounded, i.e., the quadratic function is 6-.;.

unbounded below in the feasible region. This value or INFORM occurs

when a step or infinity would have to be taken in order to continue the

algorithm.

3 X appears to be a local minimum, but optimality cannot be verified

because some or the Lagrange multipliers are very small in magnitude.

4 The iterates or the QI phase could be cycling, since a total of 50

changes were riade to the working set without altering X.

5 The limit or ITMAX iterations was reached in the Q1' phase before

normal termination occurred. 3
6 The LP phase terminate(] without finding a feasible point, and hence

it is not possible to satisry all the constraints to within Lhe tolerances

specified by the FEATOL array. In this case, the final iterate will reveal

values for which there will be a feasible point (e.g., a feasible point will

exist if the feasibility tolerance for each violatel constraint exceeds

its RESIDUAL at the final point). The modified problem (with altered

values in FEATOL) may then be solved using a wartn start.

7 The iterates may be cycling during the LI' phase; see the comments -

above under INFORM = 4.

8 The limit of ITMAX iterations was reached during the LP phase.

9 An input parameter is invalid.

ITER is an integer that gives the number of iterations performed in either the LI' phase or J
the QI' phase, whichever was last entr'ed. (Note that ITER is reset to zero after the

I'P phase.)
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OBJ is the value of the quadratic objective function at X if X is feaible (INFORM :5 5), or the

sum of infeasibilities at X otherwise (8 < INFORM < 8).

CLANDA is a real array of dimension NCTOTL that contains the Lagrange multiplier for every

constraint with respect to the current working set. The ordering of CLANDA follows the

convention given above tinder BL, i.e., the first N components contain the multipliers

for the bound constraints on the variables, and the remaining components contain the

multipliers for the general linear constraints, if ISTATE(j) = 0 (i.e., constraint j is not

in the working set), CLmDA(J) is zero. if x is optimal, CLAMDA(j) should be non-negative

if ISTATE(j) I and non-positive if ISTATE(j) 2.

,..~

e* %~..
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7. WORKSPACE PARAMETERS *

IN is an integer array of dimension LENIW, which provides integer workspace for QPSOL.

LENIW is the dimension or IV, and must be at least N + 2 + min (N, NCLIN). -

V it; a real array of dimension LENI, which provides real workspace ror QPSOL.

LENf is the dimension of W. If LP = .ALSE. or NCLIN > N, LENI must be at least 2N2 + 4N +

NROVA + 2NCON, where NCON = max(1, NCLIN). If LP = TRUJE. and NCLIN. < N, LENI

must be at least 2NCON 2 + 4N + NROVA + 2NCON.

If MSGLVL > 0, the amounts or workspace provided and required are printed. As an alternative

to computing LENI from the formula given above, the user may prefer to obtain an appropriate

value from the output or a preliminary run with a positive value or MSGLVL and LENI set to I
(QPSOL will then terminate with INFORM g)

lot
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S. AUXILIARY SUBPROGRAMS AND LABELLED COMMON

The subroutines associated specifically with the QPSOL package are the following:

ADDCON ALLOC WDERT BNDALF
CHKDAT DELCON FINDP GETLAM
LPBGST LPCORE LPCRSH LPDUMP

LPGRAD LPPRT MOVEX QPCIIXP

QPCOLR QPCORE QPCRSH QPDUMP

QPGRAD QPPRT PRTSOL RSOLVU b
TQADD TSOLVE ZYPROD.

QPSOL also uses the basic linear algebra subroutines

rAXPY CONDVC COPyNK COPTVC
DOT DSCALE ELM ELMGE
ETAGEN QUOTUT REFGEN ROT3

ROTGEN SSCALE V2NORM ZEROYC

and the subroutine MCHPAR, which defines machine-dependent constants (see Section 11).

The subroutines in the QPSOL package use the rollowing labelled COMMON areas: ..

SOLMCH (15 REAL variables; see Section 11)
SaL 1CM (3 INTEGER variables)

SOL3M ( INTGERvariables)

SOL4CM (10 REAL variables)
SOL5CM (3 REAL variables)

SOLILP (15 INTEGER variables)

SOL2LP (I LOGICAL variable.)
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9. DESCRIPTION OF THE PRINTED OUTPUT,

This section describes the intermediate printout produced by QPSOL. When MSGLVL > 5, a

line of output is produced for every change in the working set (thus, several lines may be printed

during a single iteration).

To aid interpretation of the printed results, we mention the convention for numbering the

constraints: indices I through N refer to the bounds on the variables, and indices N + 1 through
N + ICLIN refer to the general constraints. When the status of a constraint changes, the index

of the constraint is printed, along with the designation "L" (lower bound), "U" (upper bound) or

"E" (equality). If the problem is non-convex, the character "V" may appear alongside an index
in the "delete" column. This will occur if the initial projected Hessian is riot sufficiently positive '

definite (and therefore the Cholesky factor corresponds only to a subset of the columns of z; see
Section 2). The "V" is used to indicate that the Cholesky factor has been expanded to include a

new column or Z. rhe associated index gives the current dimension of the Cholesky factor.

In the LP phase, the printout includes the following:

ITI is the iteration count.

KDEL is the index of the constraint deleted from the working set. If KDEL is

zero, no constraint was deleted.

KADD is the index of the constraint added to the working set. If ADD is zero,

no constraint was added.

STEP is the step taken along the computed search direction.

NUMIU is the number of violated constraints (infeasibilities).

SUNIN is a weighted sum of the magnitudes of the constraint violations.

LPOBJ is the value of the linear objective function crz. It is printed only if LP

is .TRUE.

During the QI' phase, the printout includes the following:

ITN is the iteration count (reset to zero after the LP phase).

KDEIL is the index of the constraint deleted from the working set. If KDEL Is

zero, no constraint was deleted.

KADD is the index of the constraint added to the working set. Ir KADD is zero, ..

no constraint was added.

7V.* :.. 
•- . .* * ~ . . . . .
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TElp is the step aA, taken along the direction of search (if STEP is 1.0, the

current point is a minimum in the subspace defined by the current

working set).

11118 8 is the number or calls to subroutine QPHESS.

OBJECTIVE is the value of the quadratic objective function.

NMOLZ is the number or columns of Z (see Section 2). In general, it is the

dimension of the subspace in which the quadratic is currently being "

minimized. AS:

NORM GFREE is the Euclidean norm of the gradient of the objective function with

respect to the free variables, i.e. variables not currently held at a bound

(NORM GFREE is not printed if ORTHOG is .FALSE.). In some cases, the

objective function and gradient are updated rather than recomputed. If
so, this entry will be "--" to indicate that the gradient with respect to

the free variables has not been computed.

NORM QTG is a weighted norm of the gradient of the objective function with respect

to the free variables (NORM QTG is not printed if ORTHOG is TRUE.). In

some cases, the objective function and gradient are updated rather than ,',..

recomputed. If so, this entry will be "--" to indicate that the gradient

with respect to the free variables has not been computed.

NORM ZTG is the IEuclidean norm or the projected gradient (see Section 2).

HESS MOD is the correction added to the diagonal or the projected I Iessian to ensure

that a satisfactory Cholesky factorization exists (see Section 2). When

the projected lessian is sufliciently positive definite, HESS MOD will be

zero.

When MSGLVL = I or MSGLVL > 10, the summary printout at the end of execution of QPSOL

includes a listing of the status of every constraint. Note that default names are assigned to all -.....

variables and constraints. -.

The following describes the printout for each variable.

VARIABLE is the name (VARBL) and index j or the variable.

STATE gives the state or the variable (FR ir neither bound is in the working set,

EQ ir a fixed variable, LL ir on its lower bound, UL if on its upper bound).

if VALUE lies outside the upper or lower bounds by more than FEATOL(J),
STATE will be " +" or "--" respectively.
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VALUE is the value of the variable at the final iteration.

LOWER BOUND is the lower bound specified for the variable. ("NONE" indicates that
BL(j) < -BIGBND.)

UPPER BOUND is the upper bound specified for the variable. ("NONE" indicates that
BU(j) > BIOBND.)

LAGR MULTIPLIER is the value of the Lagrange multiplier for the associated bound con-

straint. This will be zero if STATE is FR. If X is optimal, the multiplier

* should be non-negative if STATE is LL, and non-positive if STATE is UL.

*RESIDUAL is the difference between the variable and the nearer of its bounds BL(j)
and BU(j).

The following summary printout is given for each general constraint.

LINEAR CONSTR is the name (LNCON) and index i, i I 1 to NCLIN, of the constraint.

STATE is the state or the constraint (FR for a constraint not in the working set,

EQ for an equality, LL ror an inequality constraint at its lower bound, UL
ror an inequality constraint at it. upper bound). If VALUE lies outside

the upper or lower bounds by more than its reasibility tolerance, STATE
will be "*+" or "--" respectively.

VALUE is the value or the constraint at the final point, i.e., the appropriate
component of the vector Az.

LOWER BOUNIID is the specified lower bound for the constraint. ("NONE" indicates that
BL(N + i) < -BIGBND.)

- UPPER BOUND is the specified tipper bound for the constraint. ("NONE" indicates that

BU(N + i) BIGBND.)

LAGR MULTIPLIER is the value of the l,agrange multiplier. This will Ite Zero ir STATE is FR.
If X is optimal, the multiplier should be non-negative ir STATE is LL, and

non-positive if STATE is UL.

RESIDUAL is the residual of the constraint with respect to its nearer bound, i.e.,

the difference between VALUE and the nearer or its two bounds.

-,..-
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10. ERROR RECOVERY .

Reason for termination Recommended Action

Underflow If the machine parameter indicating an underflow check (WMACH(9)) is
zero, floating-point underflow may occur occasionally, but can usually be

ignored. To avoid underflow, set WMACH(9) to a positive value; however,
this will lead to a noticeable loss of efficiency. If underflow continues to
occur for no apparent reason, contact the authors at Stanford University. 1 .

Overflow If the printed output before the overflow error contains a warning about

serious ill-conditioning in the working set when adding the j-th con-

straint, it may be possible to avoid the difficulty by increasing the mag-

nitude of FEATOL(J) and rerunning the program. If the message recurs .-.
even after this change, the offending linearly dependent constraint (with - -

index "j") must be removed from the problem. If a warning message

did not precede the fatal overflow, contact the authors at Stanford

University.

INFORM= 3 QPSOL has probably found a solution. However, the presence of very

small Lagrange multipliers means that the predicted active set may be

incorrect, or that X may be only a constrained stationary point rather

than a local minimum. The method in QPSOI, is not guaranteed to

find the correct active set when there are small multipliers. QPSOL

attempts to delete constraint: with zero multipliers, but this does not

necessarily resolve the issue. The determination or the correct active set

is a combinatorial problem that may require an extremely large amount

of time. The occurrence or small multipliers often (but not always) 7 -

indicates that there are redundant constraints. -."-

INFORM= 4 This value will occur ir 50 iterations are performed in tile QP phase

without changing X. The user should check the printed output for a

repeated pattern of constraint deletions and additions. If a sequence of

constraint changes is being repeated, the iterates are probably cycling.

(QPSOL does not contain a method that is guaranteed to avoid cycling, " -

which would be combinatorial in nature.) Cycling may occur in two

circumstances: at a constrained stationary point where there are some

small or zero Lagrange multipliers (see the discussion of INFORM = 3); ':

or at a point (usually a vertex) where the constraints that are satisfied

---- .............................................................. ,
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exactly are nearly linearly dependent. In the latter case, the user has the

option of identifying the offending dependent constraints and removing

them from the problem, or restarting the run with larger values of

FEATOL for nearly dependent constraints. If QPSOL terminates with

INFORM = 4, but no suspicious pattern of constraint changes can be

observed, it may be worthwhile to restart with the final X (with or

without the warm start option).

INFORM 5 The value of ITAX may be too small. If the method appears to be mak- "

ing progress (e.g., the objective function is being satisfactorily reduced),

increase ITMAX and rerun QPSOL (possibly using the warm start facility

to specify the initial working set). ir ITMAX is already large, but some of

the constraints could be nearly linearly dependent, check the output for

a repeated pattern or constraints entering and leaving the working set.

(Near-dependencies are often indicated by wide variations in size in the

diagonal elements of the T matrix, which will be printed if MSOLVL >

30.) In this case, the algorithm could be cycling (see the comments for

INFORM = 4.)

INFORM = 6 The Il ) phase has terminated without finding a feasible point, which

means that no reasible point exists for the given FEATOL array. The user

should check that there are no constraint redundancies. If the data for

the j-th constraint are accurate only to the absolute precision 6, the

user should ensure that the value or FEATOL(j) is grcater than 6. For .

example, ir all elerriets or A are or order unity and are accurate only

to three decimal places, every component of FEATOL should be. at least

10- 3.
INFORM= 7 or 8 These values are the analogue in the LP phase procedure or INFORM

values 4 and 5.

,-, ."..NN~5 t . ~ ~
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P 11. IMPLEMENTATION INFORMATION

* This program has been written in ANSI (1966) Fortran and tested on an IBM 3081 computer

using the WATFIV Compiler Version 1 Level 6. All subroutines in QPSOL are PFORT-compatible

- (Ryder, 1974), except for CHKAT, GETLAM and PRTSOL, which contain A2 format specifications.

At the beginning of QPSOL, the subprogram MCHPAR is called to assign various machine-

dependent parameters. These parameters are stored in the array WMACH(15) in the labelled COMMON

block SOLMCH.

Trhe specificadion of MCHPAR is

SUBROUTINE MCHPAR

REAL WMACH

COMMON /SOLMCH/ WMACH(16)

Thc first eleven components of the REAL array IMACH must be set in MCHPAR. The components

* of UXACH are defined as follows.

Definition

UWMACH(I) is NBASE, the base or floating-point arithmetic.

WMACH(2) is NDIGIT, the number or NBASE digits of precision.

WMACH(3) is EPSMCH, the floating-point precision.

*WMACH(4) is RTEPS, the square root of EPSMCH.

WMACH(5) it; FLMIN, the smallest positive Iloating-point number.

WMACH(S) is RTMIN, the square root or FLMIN.

WUACH(7) is FLM, the largest positive floating-point number.

WMUCH(8) is RTMAX, the square root of FLMAX

WMACH(9) is UNDFLW, which specifies whether or not NPSOL should check for

underflow ini certain computations. if UNDFLW = 0, no undlerflow

checkitiq will be performed. If UNDFLI is set to a p)ositive number,

QPSOL will check for un(Ierflow arid will replace too-smrall quantities

by zero. Note that QPSOL will run faster if no undcr flow checking
takes place, i.e. if WMACH(9) 0.0.

L WMACH(1O) is; NIN, the ile number for the input stream.L

WMACH(1 1) is NOUT, the file numnber for the output stream.
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'lhe followinig vr.,ion or MC11PAR (which is p,.ovided I)y the Sysb.ins Optimizalioni Laboralory)

conLai us the parameters associated wiLh double precision on a macirne in the IIBM 370 series. -'.

Th, user musl substitutaI Jt( a ver;ioni or MCHPAR th.Lt is aLppropriale for the machine to be used.

SUBROUTINE HCHPAR
C

DOUBLE PRECISION W14ACH
COMMON /SOLMCH/ WMACH(15)

C
C MCHPAR MUST DEFINE THE RELEVANT MACHINE PARAMETERS AS FOLLOWS.
C WIACH(I) = NBASE = BASE OF FLOATING-POINT ARITHMETIC.
C WMACH(2) = NOIGIT = NO. OF BASE WIIACH(I) DIGITS OF PRECISION.
C WIMACH(3) = EPSMCH = FLOATING-POINT PRECISION.
C WMACII(4) = RTEPS = SQRT(EPStICH).
C I'tACH(5) = FLMlIN = SMALLEST POSITIVE FLOATING-POINT NUMBER.
C WtACH(6) = RTIIN = SQRT(FLMIN).
C WMACH(7) = FLMAX = LARGEST POSITIVE FLOATING-POINT NUMtBER. ,a
C WMACH(8) = RTMAX = SORT(FLMAX).
C WIMACH(9) = UNDFLW = 0.0 IF UNDERFLOW IS NOT FATAL, *VE OTHERWISE.
C WMACH(10) = NIN = STANDARD FILE NUMBER OF THE INPUT STREAM.
C WM1ACH(11) NOUT = STANDARD FILE NUMBER OF THE OUTPUT STREAM.
C

INTEGER NBASE, NOIGIT, NIN, NOUT
DOUBLE PRECISION DSQRT

NSASE =16

NOIGIT = 14
WMACH( 1) = NBASE
I.MACH(2) = NDIGIT
W IACH(3) = WiACH(1)**(I - NDIGIT)
WMACH(4) = DSQRT(WMIACH(3))
UMACH(5) = WMACHE11)*(-62)
WIACH(6) =DSQRT(WMACH(5)) V
WMIACH(7) = WHIACH(l1)**61 .- -

W7IACH(8) = OSQRT(WMACH(7))
WMACH(9) = 0.00+0

HN
HOUT = 6
WIACHUOI) NIH
WMACH(11) = NOUT

C ---- IN WATFIV, ALLOW UP TO 100 UNOERFLOMS. - -.
C ---- CALL TRAPS ( 0,0,100 )

RETURN
C
C END OF KCHPAR

END

... * ..

..................................... -.
.......................................... .. *-* ***~* -- :.-; *>~-K~:*.--.-.y:-,-
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The values of NBASE, NDIGIT, EPSMCH, FLMIN and FLUAX for several machines are given in the

following table, for both single and double precision; RTEPS, RTUIN and RTMAX may be computed

using Fortran statements. The values NIN and NOUT depend on the machine installation.

For each precision, we give two values for EPSMCH, FLMIN and FLUAX. The first value is a

Fortran decimal approximation of the exact quantity; use or this value in MCHPAR should cause .

no difficulty except in extreme circumstances. The second value is the exact mathematical

representation.

Table of machine-dependent parameters

Variable IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC VAX

Single Single Single Single Single

NBASE 16 2 2 2 2

NDIGIT 6 48 27 27 24

EPSMCH 9.54E-7 7.11E-15 7.48E-9 1.50E-8 1.20E-7

16-5 2 2-7 2 2

FLUIN 1.OE-78 1.OE-293 1.OE-38 I.OE-38 1.OE-3816- 65  2 ~- 9 75  2- 129 2- t29 2 s _''
2-1292-128

FLHAX 1.0E+75 1.OE+322 1.0E+38 1.0E+38 1.0E+38

'-S..

Variable filM 360/370 CI)C 6000/7000 )IC 10/20 Univac 1100 D["C VAX

)ouble )ouble )ouble Double Double

NBASE 16 2 2 2 2

.DIGIT 14 96 62 61 56

EPSMCH 2.22D-13 2.53D-29 2.17D-19 8.68D-19 2.78D-17

16-13 2-95 2-
62 2-s° 2-5____-__

FLMIN i.OD-78 1.OD-293 1.OD-38 1.QD-308 1.OD-38

16-65 2-9"5 2- 129 2 - toI 2- 128

FLUAX 1.OD+76 1.O1)+322 1.0+'38 1.OD.307 1.OD+38

1663(l-16 - 14) 2107(l -2- 9) ,4127(l..-2) 21023 l-2-' )  2127t--se)

(-2 --

, . . .: . .
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12. EXAMPLE PROGRAM AND OUTPUT

This section contains a listing and the computed results from a sample main program that
calls QPSOL to solve an indefinite quadratic program. The problem has seven variables and seven

general constraints.
The vector c is given by

C (-.02, -. 2, -. 2, -. 2, -. 2, .04, *04)T.

The Hlessian is

0 0 2 2 0 0 0

H0 0 2 2 0 0 0

00 00 20 0

0 0 0 0 0 -2 -2

0 0 0 0 0 -2 -2

and is defined by the subroutine QPHES1, which does not store 11 explicitly.

The general constraint matrix A is

(1.0 1.0 1.0 1.0 1.0 1.0 1.0

.15 .04 .02 .04 .02 .01 .03

.03 .05 .08 .02 .06 .01 0.0

A= .02 .04 .01 .02 .02 0.0 0.0

.02 .03 0.0 0.0 .01 0.0 0.0

.70 .75 .80 .75 .80 .97 0.0 -

X.02 .06 .08 .12 .02 .01 .97

The lower and upper bound vectors t and u are

S= ( -. 01, -. 1, -. 01, -. 04, -. 1, -. 01, -. 01,

- .13, -0o, -oc, -oo, -oo, -. 099, -. 003 ),

Ui (.01, .15, .03, .02, .05, +0o, +co,

- .13, -. 0049, -. 0064, -. 0037, -. 0012, +00, .002)T

A3

The starting point z0 (which is; inreasible) is

=O (-.01, -. 03, 0.0, -. 01, -. 1, .02, .01)T.

AS
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U The computed solution (to five figures) is

z (- .01, -. 069865, .018259, -. 024281, -. 062006, .013805, .0040665)T

- One bound constraint and four general constraints are active at the solution.

PL

rL
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C*****BEGIN FILE QPMAIN FORTRAN 0.
C
C EXAMPLE PROGRAM FOR SUBROUTINE QPSOL.
C DOUBLE PRECISION VERSION 3.2. SEPTEMBER 1984..
C THE VALUE OF THE PARAMETER FEATOL IS APPROPRIATE FOR A MACHINE
C WITH A PRECISION OF 15 DECIMAL DIGITS.

I INTEGER I, INFORM, ITER, ITlAX, J, LIORK, LWORK
2 INTEGER MSGLVL, N, NCLIN, NCOLHPNCOLHI, NCTOTL * -
3 INTEGER NIN, HOUT, NROA, NROH, NRO1I"
4* INTE-ER ISTATE(14), IWORK(50)
5 DOUBLE PRECISION BIGBNDO, EPSMCH, OBJ, RTEPS
6 DOUBLE PRECISION ZERO, TWO ..
7 DOUBLE PRECISION A(7,7), BL(14), BU(14), CLAMDA(14), CVEC(7)
8 DOUBLE PRECISION FEATOL(14), HESS(I1sl HESSI(7,7), X(7) .

* 9 DOUBLE PRECISION WORK(200)
10 DOUBLE PRECISION DSQRT'
II LOGICAL COLD, LP, ORTHOG
12 EXTERNAL QPHESI, QPHES2
13 DATA ZERO , TWO

* /0.DO*0, 2.00*0/
C SET THE DECLARED ARRAY DIMENSIONS. a

C NROWA : THE DECLARED ROW DIMENSION OF A.
C NROIH = THE DECLARED ROW DIENSION OF HESS.
C NCOLH = THE hUMBER OF COLUtNS IN HESS.
C (IF QPHESS DEALS WITH THE HESSIAN IHPLICITLY,
C NROWH AND NCOLH CAN BOTH BE 1.)
C LIWORK = THE LENGTH OF THE INTEGER WORK ARRAY.
C LWORK = THE LENGTH OF THE DOUBLE PRECISION WORK ARRAY.
C

1 4' NROWA = 7
15 RO H :1
16 "COLH : I
17 LIWORK = 50
18 LIORK = 200

C
C SET THE APPROXIMATE MACHINE PRECISION.

C
* 19 EPSMCH = 1.00-15

C
C ALLOW UP TO 20 ITERATIONS TO FIND A FEASIBLE POINT,

" C AND THE SAME NUMBER TO MINIMIZE THE QUADRATIC FUNCTION.
C

2 20 IThAX = 20
C
C ASK FOR BRIEF OUTPUT EACH ITERATION, AND A FULL PRINT-OUT
C OF THE FINAL SOLUTION.
C

21 MSGLVL = 10
C
C SET THE PROBLEM DIMENSIONS.
C N = THE NUIBER OF VARIABLES.
C NCLIN : THE NUtMBER OF GENERAL LINEAR CONSTRAINTS (MAY BE 0).
C NCTOTL = THE TOTAL NUMBER OF VARIABLES AND GENERAL CONSTRAINTS.
C (THE ARRAYS ISTATE, BLt BUP CLAMBDA MIUST BE AT LEAST
C THIS LONG.)
C

:::.:: .1:;
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22 H :7
23 NCLIN a 7 "C

r: 24 NCTOTL N " NCLI'

C BDOUS GREATER THAN DIGOND HILL BE TREATED AS PLUS INFINITY.
- C BOUNDS LESS THAN - SI6NS MILL BE TREATED AS tIIUS INFINITY.

C
25 ISBIND : .OE*10

C
C ANY 801I OR LINEAR CONSTRAINT MAY BE VIOLATED BY AS MEJCN AS FEATOL.
C

26 RTEPS z DSQRT( EP31IN 3 -

27 00 20 J = It NCTOTL
2o FEATOLUJ) a RIEPS
29 20 CONTINUE

C
C A COLD START IS NEEDED FOR THE FIRST CALL TO IPSOL.
C ME UANT TO SOLVE A QUADRATIC PROGRAI, NOT AN LP PROBLEM.
C USE AN ORTHOGONAL FACTORIZATION OF THE MATRIX OF CONSTRAINTS
C IN THE WORKING SET.r C

30 COLD = .TRUE.
31 LP = .FALSE.
32 ORTH06 = .TRUE.

C
C READ THE DATA ARRAYS.
C NIN a THE UNIT NUMBER FOR INPUT.
C NOUT : THE UNIT "U ER FOR PRINTING.
C CVEC = THE LINEAR PART OF THE OBJECTIVE FUNCTION.
C A a THE GENERAL CONSTRAINT MATRIX.
C BL = THE LOWER BOUNDS ON X AND A*X.
C BU = THE UPPER BO DS ON X AND A*X.
C X : THE INITIAL ESTIMATE OF THE SOLUTION.
C

* 33 NIH : 5
34 NOUT =6
35 READ (NIN, 1000) (CVEC(J), J:IN
36 READ (HIN, 1000) (( A(IJ)9 J=IN ), I:1,NCLIN )
37 READ (NIN, 1000) I BLIJ), J=I,NCTOTL -
38 READ (NIH, 1000) I BU(J), JI,NCTOTL)
39 READ (HIN, 1000) ( X(J), J=1,N)

C
C PRINT THE DATA.
C

40 IF ("OUT .LE. 0) 60 TO 50
41 WRITE (NOUT, 2000) (CVEC(J), J:=,H)
4*2 IRITE (HOUT, 2100) ((A(IJ), JZIvN), IztNCLIN)
43 IRITE (NOUT, 2200) ( BL(J), J:IHCTOTL)
44 WRITE (OUT, 2300) ( BUJ), J=,,NCTOTL)
45 WRITE (HLOUT, 2400) 1 X(J), J:IN) I

C -

C
C SOLVE THE PROBLEM.
C THE HESSIAN IS DEFINED IMPLICITLY BY SUBROUTINE OPHESI.C " .- '"

46 50 CALL QPSOL( IThAX, MSGLVL, N,
*I NCLIN, NCTOTL, NROMA, NROWI, NCOLH,
* BIGONO, A, BL, 8U, CVEC, FEATOL, NESS, QlPRESI,
*I COLD, LP, ORTHOGs ISTATE, X*
" INFORM, ITER, OBJ, CLADA,
* e INORK, LIWORK, WORK, LNORK )

ILI
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C
C TEST FOR AN ERROR CONDITION.
C

47 IF (INFORM .ST. 0) SO TO 900
C
C
C THE FOLLOWING 1S FOR ILLUSTRATIVE PUMPOSES ONLY.
C WE DO A WARM START WITH THE FINAL WORKING SET OF THE PREVIOUS RUN.
C THIS TIME WE STORE THE HESSIAN EXPLICITLY IN HESSI-
C AND USE THE CORRESPONDING SUBROUTINE QPHES2.
C ,

48 WRITE (NJOUT, 2500)
49 COLD = .FALSE.
so MSGLVL =5
51 HROWII * 7
S2 HCOLHI: 7

C
S3 DO200J =1, N
S4 DO 100 1 = It H
SS HESSII,.J) m ZERO a
56 100 CONTINUE
57 IF (J .LE. 53 HESSI(J,J) a TWO
58 IF (J .GT. 5) HESSI(JJ) z - TWO
59 200 CONTINUE

C
60 HESSI(3,4) = TWO
61 HESSI(4,3) z TWO
62 HESSI(6,7) z - TWO j
63 HESSI(7,6) = - TWO

C
64 CALL QPSOL( IThAX, MSLVL, N,

* NCLIN, NCTOTL, NROWA, NROWH1I, COLHI,
BIGBND, A, BL, BU, CVEC, FEATOL, HESSI, QIPHES,

* COLD, LP, ORTHOG, ISTATE, X,
INFORM, ITER, OBJ, CLDA,
.I11RK, LIWORK, WORK, LNORK ) 3

65 IF (INFORM .ST. 0) 60 TO 900
66 STOP

C
C ERROR EXIT.
C

67 900 WRITE (HOUT, 3000) INFORM
68 STOP

C
69 1000 FORMATI7EI0.2)
70 2000 FORMAT(/ 1411 CVEC. / (IX, 7F0.2))-
71 2100 FORMAT(/ 1 ROWS OF A. / (IX, 7F0.2)).
72 2200 FORMATI/ I*H LOWER BOUNDS. / (IX, 7EtO.2))
73 2300 FORIIAT(/ 14H UPPER BOUNtDS. / fIX, 7E10.2))
74 2400 FORMAT(/ 12" INITIAL X. / (IX, 7FI0.2))
75 2500 FORHAT(//48H A RUI OF THE SAME EXAMPLE WITH A WAR" START.... 3
76 3000 FORMAT(/ 32H QPSOL TERMINATED WITH INFORM :, 13)

C
C END OF THE EXAMPLE PROGRAM FOR QPSOL.

77 END

78 SUSROUTINE QPHESI( N HROM4, NCOLM, JTNCOL, ESS, X, X 3.
79 INTEGER N, NROH, NCOLH, JTHCOL

, '''" ' ",' .. .-.!
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12. EXAMIPLE PRItOGRAM AND OUTPUT QI'SOL/29

80 OUJBLE PRECISION HESSfH WHCIOLH)# NXlNNp X(N)
C
C----------------------------------------------------------------------
C UPHESI COMPUTES THE VECTOR HX a (HESS)X FOR SOM1E MATRIX HESS
C THAT DEFINES THE HESSIAN OF THE REQUIRED QP PROBLEM.
C
C IN THIS VERSIOH OF PHESS THE HESSIAN MATRIX IS IMPLICIT.
C THE ARRAY HESS IS NOT ACCESSED. THERE IS NO SPECIAL CODING
C FOR THE CASE JTHCOL .GT. 0.
C----------------------------------------------------------------------
C

6l DOUBLE PRECISION ONE, TWO
62 DATA ONE/1. OD*/, T /2.OOD*O/

C
63 HXII) aTW*XII)
84 HXI 2) a TWX(2)
65 HXt3) = TNOI(X(3) * X(4))
86 HXi4) = HX(3)
87 HXIS) z TWO*X5 )
e8 HXI6) z - Th0W(X(6) X(7))
89 HX(7) a HX(6)
90 RETURN

C
C END OF QPHESI

91 END

92 SUBROUTIHE QPHES2( N, HEOH, HCOLH, JTHCOL, HESS. X. HX "
93 INTEGER H, N.OWI, NCOLH, JHCOL
94 OUBLE PRECISION HESSIHROSU,NCOLHI. HXIN), X(H)

C
C----------------------------------------------------------------------
C IN THIS VERSION OF IPHESS, THE MATRIX H IS STORED IN HESS AS
C A FULL TWO-DIMENSIONAL ARRAY.
C COPYVC AID ZEROVC ARE UTILITY ROUTINES USED BY QPSOL.
C ---------------------------------------------------------------------

95 INTEGER I, J
96 DOUBLE PRECISION XJ

C
97 IF (JTHCOL .EQ. 6) 60 TO 100

C
C SPECIAL CASE -- EXTRACT ONE COLUMIN OF H.
C

98 CALL COPYVC( No HESS(1,JTHOL)o N, I, HXP No I )
99 RETURN

C
C NORMAL CASE.
C

100 100 CALL ZEROVC( N, HX, N, 1
101 D0 200 J 1,H
102 XJ z X(J)
103 00 1S0 I a I, N
104 HX(I) z HX(I) * HESS(I,J0*XJ
105 ISO CONTINUE
106 20 CONTINUE
107 RETUN "-

C
C END OF QlHES

108 END

-'- . -: ..
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QI'SO,/30 12. EXAMI'L,, I'O(itAM AND OUTPUT

109 SUBROUTINE QPHES3( N, IWOIi NCOLN, JTHCOLP HESS, X HX H"
110 INEGE No 1 , NCOL, JNOL
111 DOUBLE PREC1SI1N HESSIHROSIvCOWI, H(NXN) XIN)

C-C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C IN THIS VERSION OF QPHES THE SYMMETRIC PART OF H IS STORED IN
C THE LOWER HALF OF THE TWO-DIMEH3OAL ARRAY HESS, I.E., IN THE
C ELEMENTS HESSIIJ), I .BE. J.
C C---------------------------------------------------------------------
C

112 INTEGER Is Js JPI, LROSN, NlI, HUl-
113 DOULE PRECISION S, XJ

C

C SPECIAL CASE -- EXTRACT ONE COLUM OF H.O-
C

115 LROWN = NROWIH*(JTHCOL - 1) * I
116 CALL COPYVC( JTNCOL, HESS(JTHCOLPIV LREONH NROSI, HX, JTHCOLP I I -
117 NUM = N - JTNCOL -
116 JPI = JTHCOL # I.
119 IF (HUMl .GT. 0)

u CALL COPYVC( NUl, HESSiJPIJThCOL) HUMt, Is XIJPI), NUt, I 3 "
120 RETURN

C
C NORMAL CASE.
C

121 100 DO00 1 1l, N
122 S a 0.00.
123 D0 150 J Is N124 5 z 3 HESS(Jpr)X(J)

125 ISO CONTINUE
126 HX() a ,
127 200 CONTINUE
128 IF (N .LE. 1) RETURN

C -F
129 NtIl z - 1
130 00 400 J = to tI
131 XJ = X(J)
132 JPI =J * I
133 DO 350 I = JPI N
134 HX(I) • HX(I) * HEss(IJ).XJ
135 350 CONTINUE
136 400 CONTINUE
137 RETURN , .

C END OF RPHES3
138 END

139 SUROUTINE QPHES4( N, MGM", NCOLN, JTHCOL, HESS, Xp NX
140 INTEGER N, NROII, NCOLH, JTHCOL
141 DOUBLE PRECISION HESS(NROIH), HXIH), Xi)

C
C ---------------------------------------------------------------------
C IN THIS VERSION OF QPHE5S, THE SYMMETRIC PART OF H IS STORED IN
C THE ONE-DIEHSIONAL ARRAY NESS. NOTE THAT t011 IS USED TO DEFINE .
C THE LENGTH OF HESS, AND MUST BE AT LEAST NW(N * 1)/2. THE
C PARAIETER NCOLM IS NOT USED HERE, BUT IT MJST BE SET TO I FOR
C THE CALL TO QPSOL.
C-----------------------------------------------------------------------

C .. .... ... .... .... ... .... ... .... .... ... .... .... ... .... .. * %"
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C
142 INTEGER I, I. J9 JPI, Ls l, H4U.f
143 DOUBLE PRECISION So XJ

C .
144 IF (JTHCOL .EQ. 0) 60 TO 100

C
C SPECIAL CASE -- EXTRACT ONE COLUM OF H.
C

f45 L z JTHCOL
146 IC N
147 DO 50 I I, JTHCOL
148 HX() HESS(L)
149 INC INC - 1ISO L Is L INC !i;i'
1S1 .SO CONTINUE

C
1S2 L L -INC *1
IS3 HUl =N - JTHCOL
154 JPI JHCOL + I
ISS IF (HUM .ST. 0)

U CALL COPYVC( HUMl, HESS(L) HUM, Is HX(JPI), 14M 1
156 RETURN

C
C NORMAL CASE.
C

157 100 L 0
1S8 DO 200 1 a It N
159 3 z 0.O0*0
160 00 150 J z t N
161 L " L I
162 S S * HESS(L)*X(J)
163 IS0 CONTINUE
164 HXtI) a -
165 200 CONTIN"E
166 IF IN .LE. 1) RETURN

C
167 L = 0
168 14111 - I
169 DO 400J z It NIl
170 XJ XIJ)
171 L a L 1
172 JPI J * I
173 D0 350 1 : JPI, N ; -
174 L aL1 1
175 HXII) HXII) * HESS(L)UXJ
176 350 CONTINUE
177 400 CONTINUE
178 RETURN

C
C ENO OF QOPES4

old . 179EN

180 SUBROUTINE QPss(t N, mOn, NCOLH, JTHCOL, HESS, X, HX I
181 INTEGER N. NROWH, NCOLH, JTHCOL ,+,. -.
182 DOUBLE PRECISION HESSIHROIHNCOLLH) HXIN)v XIH) ,--.,.

CC ------ "- ------ ------ ------- ------ -------

C IN THIS VERSION OF IPHESS, THE CHOLESKY FACTOR OF N 1S STORED IN .. *'-

C THE LONER HALF OF THE TWO-DIMENSIONAL ARRAY NESS. IN OTHER WORDS, -

r u Lu LITRANSPOSE). WHERE L IS A LONER TRIANWILAR MATRIX RTORED

C,,-.., -.

6 .. ; . . - , . . . +. . -. ++. .. . .. ... ....... . . ... . ., * * * *



QPSOL/32 12. EXAMPL, PIROGRAM AND OUTPUT

C IN HESS(I,J), I .6!. J. . -
C ---- - - - - - - - -- - - - - - -------------------e-m m m e w e~ w o e e ~ w ~ w e~ --------------- m

C

163 INTEGER 1, ISACK J, JMAX, LROWI, HUM
184 INTEGER HINO
185 OULBLE PRECISION S

C
186 IF (JTHCOL .EQ. 0) 60 TO 100

C
C SPECIAL CASE -- NHE EE HX L (JTH RON OF Lt.
C

187 HU N -JTHCOL + I
188 CALL ZEROVC( IM, HX(JTHCOL)o 1I1, I I
189 HUM JTHCOL
190 LROWiH m 1HROWI (HU - 1) + I
191 CALL COPYVC( HU, HESS(JTHCOLPI, LRO4 IWOWi, lx, HM, N )1" 
192 60 TO 300

C
C NORIIAL CASE.

193 100 DO 200 1 : t, N
194 S : O.O0•O""

19s 00 150 J Is N
196 S = * 4 HESS(JPIIX(J)
197 1SO CONTINUE
198 HX(TI) a 5
199 200 CONTINUE

200 HU = N -.
C ;.
C COMPUTE HX m L W HX. "

C
201 300 IBACK H
202 DO 400 1 x I, N
203 S x 0.0D0
204 JAX a MTNO1 HUMP IBACK I i
205 00 350 J = It JflAX

206 S = S * HESS(ISACKJ)*HX(J)
207 350 CONTINUE
208 HX(IBACK) = S
209 IBACK : ISACK - '
210 400 CONTINUE
211 RETURNL C

C END OF QPHES5
212 END

213 SUBROUTIE QPIES6( N, HROMH, HCOLH, JTHCOL, HESS, X, HX I
214 INTEGER N, INOW1l, NCOLH, JTHCOL
215 DOULE PRECISION HESSIHROII), HX(N), X:")

C
C ---------------------------------------------------------------------
C IN THIS VERSION OF OPHESS, THE CHOLESKY FACTOR OF H IS STORED IN
C THE ONE-OIIENSIONAL ARRAY HESS. IN OTHER WORDS,
C H L * LITRANSPOSE), WHERE L IS A LOWER TRIANGULAR MATRIX STORED
C COMPACTLY BY COLUIMNS IN HESS. NOTE THAT HROHH IS USED TO DEFINE
C THE LENGTH OF MESS* AND MUST BE AT LEAST N*(H *1')/Z. THE

C PARAMETER HCOLI IS NOT USED HERE, BUT IT SHOULD BE SET TO I FOR
C THE CALL TO QPSOL.
C-----------------------------------------------------------------------------------

u
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.. i 'S..,

216 INTEGER 1, BACK, INC* Jo JlAX Lo NUM

217 INTEGER NIHO
i 218 OUBLE PRECISION S

C
219 IF (JTHCOL .EQ. 0) 60 TO 100

C
C SPECIAL CASE -- ME NEED HX = L * (JTH RON OF L).
C

220 HUM N - J4COL*1
221 CALL ZEROVC( NU, HX(JTHCOL), NUII I I
222 L a JTHCOL
223 INC N

224 DOS50!1 1 v JTHCOL
225 HX(I) t HESS(L)
226 INC :NC - I
227 L L * INC
228 50 CONTINUE

229 M z JINCOL
230 60 TO 300

C
C NORMIAL CASE.
C

231 100 L s 0
Z32 DO 00 1UN
233 S a 0.OO*0
Z34 DO 150 J: Z m
235 L : L I
236 5 a S NESS(L)0X(J)
237 150 CONTINUE
238 HX() S -

239 200 CONTINUE
C

240 mm

c COMPUTE HX= L HX.
C

241 300 IsAC= z .

242 00 00 1 : to
243 5 " 0.00 0
244 L : ISACK
245 INC :N

L- Z46 MAX : HINO( NUr, XIACK I
247 O0 350 J a I, JtAX
248 S a 5 * HESS(L)NHX(J)
Z49 INC a INC - I
ZS L : L 4 INC

*251 350 CONTINUJE
2s2 HX(IBACK) a S
253 IBACK ICK- I
254 400 CONTINUE
255 RETURN

c
C END OF QPWES6

256 EN"
.t ,e

.................. .--
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CVEC.
-0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.04

RONS OF A.
1.00 1.00 1.00 1.00 1.00 1.00 1.00 i
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.00
0.02 0.0* 0.01 0.02 0.02 0.00 0.00
0.02 0.03 0.00 0.00 0.01 0.00 0.00
0.70 0.75 0.80 0.75 0.80 0.97 0.00
0.02 0.06 0.08 0.12 0.02 0.01 0.97

LOWER BOUNOS. _
-O.1O-01 -1O0. 00 -0.100-01 -0.400-01 -0.100 00 -0.100-01 -0.100-01
-0.130 00 -0.100 13 -0.100 13 -0.100 13 -0.100 13 -0.990-01 -0.300-02

UPPER BOUNDS.
0.100-01 0.130 00 0.300-01 0.200-01 O.O-01 0.100 13 0.100 13
-0.130 00 -0.490-02 -0.640-02 -0.370-02 -0.120-02 0.100 13 0.200-02

ta-
INITIAL X.

-0.01 -0.03 0.00 -0.01 -0.10 0.02 0.01

WORKSPACE PROVIDED 13 IN( 50), mt 200).
TO SOLVE PROBLEM HE HEE1D IN( 141) W( 161).

ITH JOEL JADO STEP COWD T NUMINF SUtIINF
0 0 0 o.oo0-Ol 1.830 02 3 1.0380000-01I 1 9U 13L 4.120-02 1.560 02 1 3.0000000-02
2 12U 4L 4.240-02 5.300 01 0 0.000000o-01

EXIT LP PHASE. INFORM 0 ITER : 2

ITH JOEL JADO STEP HESS OBJECTIVE COIZ NOR GFREE NORM ZTS COWD T COWO ZHZ HESS MOO
0 0 0 0.000-01 1 4.58000-02 0 2.410-01 0.000-01 S.30 01 1.00 00 O.OO-01 3
0 SL 0 0.000-01 2 4.S8000-0z 1 4.670-01 2.160-01 6.00 Of 1.00 00 0.000-01
1 0 14L 1.330-01 3 4.16160-02 0 4.440-01 0.000-01 6.00 01 1.00 00 0.000-01
I IU 0 0.000-01 4 4.16160-02 I 4.440-01 9.460-02 1.30 O 1.00 00 0.000-01
2 0 0 1.000 00 S 3.93620-02 1 4.330-01 1.390-17 1.30 01 1.00 00 0.000-01
2 3L 0 0.000-01 6 3.93620-02 2 5.260-01 9.200-02 I.SD 01 1.30 00 0.000-01
3 0 IOU 4.150-0I 7 3.75890-02 I S.180-01 1.190-02 5.70 01 1.00 00 0.000-01
4 0 0 1.000 00 8 3.75S40-02 1 5.180-01 3.470-18 5.70 O 1.00 00 0.000-01
4 4L 0 0.000-01 9 3.7SS40-02 2 S.770-01 5.010-02 5.30 01 1.20 00 0.000-01
5 0 0 1.000 00 10 3.70320-02 2 5.57-01 8.590-18 5.30 01 1.20 00 0.000-01

EXIT QP PHASE. INFORM - 0 ITER = S

VARIABLE STATE VALUE LOWER BOUND UPPER BOUND LAGR MULTIPLIER RESIDUAL

VARBL 1 LL -0.10000000-01 -0.10000000-01 0.10000000-01 0.4700306 0.0000
L VARBL 2 FR -0.69864650-01 -0.1000000 0.1500000 0.0000000 0.30140-01

VARBL 3 FR 0.18259150-01 -0.10000000-01 0.300000o0-01 0.0000000 0.11740-01
VARBL 4 FR -0.24260810-01 -0.40000000-01 0.20000000-01 0.0000000 0.1S740-01
VARBL S FR -0.6200S640-01 -0.1000000 0.50000000-01 0.0000000 0.37990-01
VARBL 6 FR 0.1380500-01 -0.10000000-01 NONE o.rnoooo 0.23810-01
VARBL 7 FR 0.40664960-02 -0.10000000-01 CHE 0.0000000 0.14070-01

A .
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12. EXAMPLE 1ItOGItAM AND OUTPUT QI'SOL/35

LINEAR CONSTR STATE VALUE LONER BWUHO UPPER BOUND LAOR MULTIPLIER RESIDUAL

a LNCON I EQ -0.1300000 -0.1300000 -0.1300000 -1.908183 0.41630-16
LNCON 2 FR -0.S8798980-02 NONE -0.4900000D-02 0.0000000 0.97990-03
LNCON 3 UL -0.64000000-02 NONE -0.64000000-02 -0.3143604 0.86740-18
LNCON 4 FR -0.4S373230-02 NONE -0.37000000-02 O.00000O 0.83730-03 . ..
LNCOH S FR -0.29159960-02 NONE -0.12000000-02 0.0000000 0.17160-02
LHCOH 6 LL -0.99200000-01 -0.99200000-01 NONE 1.954501 0.55SID-16
LNCON 7 LL -0.30000000-02 -0.30000000-02 0.20000000-02 1.971S86 0.27110-18

EXIT QPSOL - OPTIMAL QP SOLUTION.

FINAL QP OBJECTIVE VALUE 0.37031650-01

A RUN OF THE SAME EXAMPLE WITH A HARM STAT....."

RORKSPACE PROVIDED IS ED 1( 1), N( 1).

TO SOLVE PROLEM iE NEED IN4( 109 W( 161).

EXIT LP PHASE. INFORM = 0 ZTE 0

rT JOEL JADO STEP MHESS OBJECTIVE HCOLZ NOR" GFREE NORM ZTS CONO T COND ZHZ HESS MOD
0 0 0 0.000-01 3 3.70320-02 2 SS70-01 8.6S0-16 3.50 01 1.30 00 0.000-01

EXIT QP PHASE. INFORM Z 0 ITER 0

EXIT QPSOL - OPTIMAL QP SOLUTION.

FINAL tP OBJECTIVE VALUE 3 0.37031650-01 ., -

- IL
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